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Rationale
Competency in a programming language is prerequisite to the study of computer engineering. Object-oriented programming, event-driven applications, and the use of extensive   APIs  (application   programming   interfaces)   are  fundamental  tools  that computer engineering students need early in their academic program.
Objectives

To  introduce  the  student  to  the  fundamental  aspects  of  computer  program writing

To relate with the history and evolution of computer programming

To expose the student to the state-of-the-art computer programming tools

To provide the student with the basics of computer program design
Course Content
1. 
History and Overview
  Indicate some reasons for studying programming fundamentals
  Influential people; important areas such as programming constructs, algorithms, problem solving, data structures, programming paradigms, recursion, object-oriented programming, event-driven programming, and concurrent programming
  Contrast between an algorithm and a data structure
  Distinguish between a variable, type, expression, and assignment
  Highlight the role of algorithms in solving problems
  Describe some of the fundamental data structures such as array, record, stack, and queue
  Explain how divide-and-conquer strategies lend themselves to recursion
  Explore some additional resources associated with programming fundamentals
  Explain the purpose and role of programming fundamentals in computer engineering
2. 
Programming Languages
  Definition and History
  Characteristics (Pragmatics, Semantics and Syntax)
  Distinction between Text-based and Visual Programming
  Classification (Categorical, Chronological and Generational)
  Comparison of common programming languages (C, C++, C#, Java)
  Programming errors and warnings (syntax, logical, etc.)
3. 
Programming Paradigms
  Definition and rationale of a programming paradigm
  Types: Structured, Unstructured, Procedural, Object-oriented, Event-Drive, Generic etc.
  Separation of behavior and implementation
4. 
ISO/ANSI C++ Programming Fundamentals
  Bjarne Stroustrup Design rules
  Console applications basics (Source file, Basic I/O, Standard  I/O Consoles, Function main( ))
  Fundamental data types
  Expressions and operators
  Control constructs (Conditional and Iterative)
  Pointers and Named collections (Arrays, Enumerators, Bit-fields, Unions)
  User-defined data types (Structures and Classes)
  Functions (In-built and User-defined)
  Object –oriented programming (Abstraction, Encapsulation, Inheritance, Composition, Polymorphism, Friend and Virtual Functions)
  File I/O
5. 
Algorithms and Problem-Solving
  Problem-solving strategies
  The role of algorithms in the problem-solving process
  Implementation strategies for algorithms
  Debugging strategies
  The concept and properties of algorithms
  Structured decomposition
6. 
The Integrated Development Environment (IDE)
  Definition
  Toolchains
  Advantages of IDEs
  Comparison of IDEs
  Using a typical IDE (Visual Studio)
Learning Outcomes
On completion of this course the student should be able to:

Describe how computer engineering uses or benefits from programming fundamentals.

Identify the appropriate paradigm for a given programming problem.

Use a suitable programming language to implement, test, and debug algorithms for solving simple problems.

Describe the way a computer allocates and represents these data structures in memory.

Outline the philosophy of object-oriented design and the concepts of encapsulation, subclassing, inheritance, and polymorphism.
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