CMP1201 Computer Programming Fundamentals
	Period per
Week
	Contact
Hour per
Semester
	Weighted
Total Mark
	Weighted
Exam Mark
	Weighted
Continuous Assessment Mark
	Credit
Units

	LH
	PH
	TH
	CH
	WTM
	WEM
	WCM
	CU

	45
	30
	00
	60
	100
	60
	40
	4

Rationale
Competency in a programming language is prerequisite to the study of computer engineering. Object-oriented programming, event-driven applications, and the use of extensive APIs (application programming interfaces) are fundamental tools that computer engineering students need early in their academic program.
Objectives

To introduce the student to the fundamental aspects of computer program writing

To relate with the history and evolution of computer programming

To expose the student to the state-of-the-art computer programming tools

To provide the student with the basics of computer program design
Course Content
1.
History and Overview
 Indicate some reasons for studying programming fundamentals
 Influential people; important areas such as programming constructs, algorithms, problem solving, data structures, programming paradigms, recursion, object-oriented programming, event-driven programming, and concurrent programming
 Contrast between an algorithm and a data structure
 Distinguish between a variable, type, expression, and assignment
 Highlight the role of algorithms in solving problems
 Describe some of the fundamental data structures such as array, record, stack, and queue
 Explain how divide-and-conquer strategies lend themselves to recursion
 Explore some additional resources associated with programming fundamentals
 Explain the purpose and role of programming fundamentals in computer engineering
2.
Programming Languages
 Definition and History
 Characteristics (Pragmatics, Semantics and Syntax)
 Distinction between Text-based and Visual Programming
 Classification (Categorical, Chronological and Generational)
 Comparison of common programming languages (C, C++, C#, Java)
 Programming errors and warnings (syntax, logical, etc.)
3.
Programming Paradigms
 Definition and rationale of a programming paradigm
 Types: Structured, Unstructured, Procedural, Object-oriented, Event-Drive, Generic etc.
 Separation of behavior and implementation
4.
ISO/ANSI C++ Programming Fundamentals
 Bjarne Stroustrup Design rules
 Console applications basics (Source file, Basic I/O, Standard I/O Consoles, Function main())
 Fundamental data types
 Expressions and operators
 Control constructs (Conditional and Iterative)
 Pointers and Named collections (Arrays, Enumerators, Bit-fields, Unions)
 User-defined data types (Structures and Classes)
 Functions (In-built and User-defined)
 Object –oriented programming (Abstraction, Encapsulation, Inheritance, Composition, Polymorphism, Friend and Virtual Functions)
 File I/O
5.
Algorithms and Problem-Solving
 Problem-solving strategies
 The role of algorithms in the problem-solving process
 Implementation strategies for algorithms
 Debugging strategies
 The concept and properties of algorithms
 Structured decomposition
6.
The Integrated Development Environment (IDE)
 Definition
 Toolchains
 Advantages of IDEs
 Comparison of IDEs
 Using a typical IDE (Visual Studio)
Learning Outcomes
On completion of this course the student should be able to:

Describe how computer engineering uses or benefits from programming fundamentals.

Identify the appropriate paradigm for a given programming problem.

Use a suitable programming language to implement, test, and debug algorithms for solving simple problems.

Describe the way a computer allocates and represents these data structures in memory.

Outline the philosophy of object-oriented design and the concepts of encapsulation, subclassing, inheritance, and polymorphism.
Recommended and Reference Books
[1]
Herbert Schildt, 2003. C++ from the Ground Up, Third Edition, McGraw- Hill/Osborne, ISBN 0-07-222897-0
[2]
Chuck Easttom, 2003. C++ Programming Fundamentals, Charles River
Media, ISBN 158402371
[3]
Bjarne Stroustrup, 2000. The C++ Programming Language, Addison-Wesley, ISBN 0-201-70073-5
[4]
Michael T. Goodrich, Roberto Tamassio, David Mount, 1995. Data Structures and Algorithms in C++, John Wiley, ISBN 0-471-20208-8
[5]
Robert Sedgewick, 2001. Algorithms in C++, Addison – Wesley, ISBN
0201510596
[6]
Nell Dale, 2003. C++ Data Structures, Jones and Bartlett Publishers

