Research Groups in the Department of Mechanical Engineering

No.	Name of research group	Research interests	Group head/team leader	Group members	Current research projects	Completed research projects
1	VALue-addition Of waste and mineral Resources for an Innovative Zero-Wa ste Economy (VALORI ZE).	Material Characterizations, Experimental designs and optimization, Iron and steel, zeolites, geopolymer cements, Porcelains, Bio-active carbons, Industrial and agricultural waste valorization for energy, water treatment, and air quality management	Peter W. Olupot	 Emmanuel Menya Joseph Jjagwe Joel Wakatuntu Medard Turyasingura Tumutungire Mwebembezi Godfrey Ssajja-Ssali Edmond Mpagi Tadeo Mibulo Godfrey Wangi 	 Metallization of Ugandan Iron Ores. Funding: Science, Technology and Innovation (STI), Office of the President of Uganda. Development of Iron Oxide Nanoparticles from steel waste for Applications in Drinking Water Treatment. Funding: Science, Technology and Innovation (STI), Office of the President of Uganda. Iron oxide-based nanocomposite bio-adsorbents for water treatment. Funding: EPFL-/EXAF-Switzerland. Development of zeolite-based nano-composite filters 	1. Development of a recyclable-water hand-washing facility (ECO-WASH). MakRIF COVID-19 Call. 2019-2020. UGX. 60,000,000 2. Technological Application of Rice Husks in the Production of Activated Carbon for Industrial Applications in Uganda. Funding: Volkswagen Foundation 2015-2019. Eur. 166,000 3. Characterization of rice husks for production of particle boards. Funding: Faculty

	T	Г		Т	г	
					for drinking water	Fund. 2013-2014.
					treatment in Uganda.	USD 7000.
					Funding:	4. Development of
					MAPRONANO/MakRIF	an appropriate
					5. Technology for	technology for
					application of	production of
					activated carbons	electric porcelain
					from rice husks in	insulators from
					water treatment.	ceramic minerals
					Funding: Volkswagen	in Uganda.
					Foundation & MakRIF	Funding:
					6. Renewable Energies	Volkswagen
					for Africa: Effective	Foundation
					Valorisation of	2011-2013. Eur.
					Agri-Food Wastes	30,000
					(REFFECT-AFRICA).	
					Funding: European	
					Commission Horizon	
					2020	
					7. Optimisation of	
					Recirculating Water	
					Treatment Process for	
					a Smart Communal	
					Hand Washing	
					System. Funding:	
					Volkswagen	
					Foundation	
2	Bioproducts from	Bio-composite plastics,	Michael Lubwama	Michael Lubwama	1. Bioplastics	1. Upcycling plastic
	Bio-composites,	Bio-plastics, Bio-fuels,		Vianney Andrew Yiga	development from	wastes by
	Bio-plastics, and	Bio-char, Composite		Victor Alirach	agricultural residues	

В	Bio-fuels for	briquettes, Carbon-based	Herman Mbabali		incorporating
S	sustainable	thin films, Surface	Ismail Kimuli	2. Bio-char reinforced	agricultural residues
d	development	Engineering, Energy		plastic composites for	
(9	Sustainable	modelling, Product		thermal stability	2. Thermal stability of
В	Bioproducts Group -	development and process			rice husk fiber
В	BioSus)	optimization.		3. Composite briquettes	reinforced PLA
				from waste materials with	
				uncommon binding	3. Development of
				agents	sustainable packaging
					material from banana
				4. Developing of	stems and bagasse
				sustainable packaging	
				material	4. Development of
					briquettes for
					domestic cooking
					applications

Some Recent Publications from Sustainable Bioproducts Group – Dr. Michael Lubwama

- 1. Yiga VA, Nuwamanya A, Birungi A, Lubwama M, Lubwama HN (2023) Development of carbonized rice husks briquettes: Synergy between emissions, combustion, kinetics and thermodynamic characteristics. Energy Reports 9: 5977-5991. https://doi.org/10.1016/j.egyr.2023.05.066
- 2. Lubwama M, Yiga VA, Lubwama HN, Ssempijja I, Kihedu I (2023) Emissions and emission factors for Dichrostacys cinerea, Morus Lactea, Pilostigma thonningii, Combretum mole, and Albizia grandibracteata firewood species and their charcoals. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04005-2
- 3. Mbabali H, Lubwama M, Yiga VA, Were E, Kasedde H (2023) Development of Rice Husk and Sawdust Mycelium-Based Bio-composites: Optimization of Mechanical, Physical and Thermal Properties. *J. Inst. Eng. India Ser. D.* https://doi.org/10.1007/s40033-023-00458-x

- 4. Kimuli I, Lubwama M, Kirabira JB, Sebbit A (2023) Development of a sustainable low-carbon footprint for Greater Kampala Metropolitant Area: The efficacy of a TIMES/CGE hybrid framework. Energy Reports 9: 19 36. https://doi.org/10.1016/j.egyr.2022.11.144
- 5. Yiga VA, Lubwama M. Olupot PW (2023) Thermal stability of NaOH modified rice husk fiber-reinforced polylactic acid composites: Effect of rice husks and clay loading. Results in Materials 18:100398. https://doi.org/10.1016/j.rinma.2023.100398
- 6. Yiga VA, Lubwama M, Opio J, Menya E, Nono D, Lubwama HN (2023) Production and characterization of paper from banana stem fiber: Optimization using box-behnken design (BBD). Journal of Natural Fibers 20 (1): 2192019. https://doi.org/10.1080/15440478.2023.2192019

Some Recent Publications from the Valorize Group – Dr. Peter W. Olupot

- 1. J. Jjagwe, **P. W. Olupot**, S. Carrara, Iron oxide nanoparticles/nanocomposites derived from steel and iron wastes for water treatment: A review, *Journal of Environmental Management*, Volume 343, 2023, 118236, ISSN 0301-4797, https://doi.org/10.1016/j.jenvman.2023.118236.
- 2. T. Tibesigwa, **P. W. Olupot** & J.B. Kirabira (2023) Assessment of the techno-economic viability of B10 synthesis from second-generation biodiesel feedstocks in Uganda. *International Journal of Sustainable Energy*, 42:1, 351-373, DOI: 10.1080/14786451.2023.2191144.
- 3. Tibesigwa, T., Iezzi, B., Lim, T.H., Kirabira, J.B., **Olupot, P.W**., Life cycle assessment of biodiesel production from selected second-generation feedstocks, *Cleaner Engineering and Technology* (2023), https://doi.org/10.1016/j.clet.2023.100614.
- 4. E. Menya, J. Jjagwe, H. M. Kalibbala, H. Storz, **P. W. Olupot,** Progress in Deployment of Biomass-Based Activated Carbon in Point-of-Use Filters for Removal of Emerging Contaminants from Water: A Review. *Chemical Engineering Research and Design* (2023). https://doi.org/10.1016/j.cherd.2023.02.045
- 5. Lutaaya, S.M., **Olupot, P.W**., Wakatuntu J., Kasedde H. Effects of waste paper on fuel and mechanical properties of biogas digestate-derived briquettes. *Biomass Conversion and Biorefinery* (2023). https://doi.org/10.1007/s13399-023-03929-z
- 6. J. Wakatuntu, **P. W. Olupot**, J. Jjagwe, E. Menya, M. Okure. Optimization of pyrolysis conditions for production of rice husk-based bio-oil as an energy carrier. *Results in Engineering* (2023). https://doi.org/10.1016/j.rineng.2023.100947.
- 7. H.M. Kalibbala, **P.W. Olupot**, O.M. Ambani. Synthesis and efficacy of cactus-banana peels composite as a natural coagulant for water treatment, *Results in Engineering (2023)*, doi: https://doi.org/10.1016/j.rineng.2023.100945.
- 8. M. Turyasingura, J. Wakatuntu, M. Lubwama, J. Jjagwe, O. Hensel, **P.W. Olupot**, Optimisation of eggshell-zeolite composite as a potential surfactant adsorbent for hand-washing wastewater, *Case Studies in Chemical and Environmental Engineering 7 (2023), 100284.* https://doi.org/10.1016/j.cscee.2022.100284.