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Faecal sludge as a solid industrial fuel: a pilot-scale study

Moritz Gold, Daniel Isaac Waya Ddiba, Alsane Seck, Patrick Sekigongo,

Alassane Diene, Serigne Diaw, Seydou Niang, Charles Niwagaba

and Linda Strande
ABSTRACT
Revenues from faecal sludge (FS) treatment end products could offset treatment costs and

contribute to financially viable sanitation. In urban sub-Saharan Africa, energy-producing resource

recovery has the potential to generate greater revenue than use as soil conditioner. In contrast to

wastewater sludge, the technical feasibility of using dried FS as solid fuel in industries has not been

investigated. This study evaluated it through characterization of dried FS from drying beds and by

assessing the combustion performance in two pilot-scale kilns; in Kampala and Dakar. Results from

the fuel characterization demonstrate that dried FS had comparable fuel characteristics as

wastewater sludge considering calorific value and ash content. The calorific values and ash contents

were 10.9–13.4 MJ/kg dry matter (DM) and 47.0–58.7%, respectively. Results from pilot-scale

experiments suggest that dried FS can be effective in providing energy for industries. Temperatures

in pilot-scale kilns fueled by FS were 800 WC, sufficient for curing of clay bricks, and 437 WC, sufficient

for waste oil regeneration. In Kampala and Dakar, an estimated 20,000 tons of FS DM per year

accumulate. Tapping the industrial fuel market and financial benefits could be realized through

optimization of onsite sanitation and treatment technologies.
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INTRODUCTION
Worldwide, the sanitation needs of 2.7 billion people are

met by onsite sanitation technologies (Cairns-Smith et al.

). This results in the accumulation of large quantities

of faecal sludge (FS), defined as the raw or partially

digested, semisolid or slurry resulting from collection,

storage or treatment of combinations of excreta and black-

water, with or without greywater, in onsite sanitation
technologies (Strande ). Lack of financial resources is

one reason why FS management services frequently do

not exist or cannot be sustained in low-income countries

(Murray & Drechsel ; Bassan et al. ). Hence,

large amounts of FS are discharged untreated into the

environment, jeopardizing public and environmental

health (Peal et al. ).
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A market exists for FS treatment end products, includ-

ing solid fuels, biogas, soil conditioner, protein, fertilizer

and compost (Diener et al. ; Gold et al. ). How-

ever, most of these markets remain untapped, with only

limited use of treated FS as soil conditioner (Diener et al.

). In sub-Saharan Africa, energy producing options

have a higher revenue potential than other treatment end

products (Diener et al. ), and can be recovered

within urban markets reducing transportation, and gener-

ated income could offset treatment costs. Large-scale

industrial markets such as cement or coal-fired power

plants are especially promising due to their large and con-

sistent fuel demands.

In Europe, the USA, China and Japan, wastewater treat-

ment sludge has already been used for many years as a solid

industrial fuel in cement industries and coal-fired power

plants (Werther & Ogada ; Spinosa ). For example,

in Germany, power plants substitute 3–10% of coal con-

sumption (by weight) with 10,000 to 100,000 tons of

wastewater sludge dry matter (DM) per year (Richers et al.

). In Switzerland, one cement company uses around

15,000 tons of wastewater sludge DM per year, and in

2012, 27% of wastewater sludge produced in Switzerland

was used as an industrial fuel in cement production

(Tezcan ). The calorific value of FS is 12.2–19.1 MJ/kg

DM, which is comparable to that of wastewater sludge

and other biofuels (Muspratt et al. ; Seck et al. ).

However, in contrast to wastewater sludge, dried FS fuel

has not been assessed for use as an industrial fuel (Werther

& Ogada ; Luts ; Niwagaba et al. ). Research is

currently lacking in FS characteristics that influence com-

bustion and adverse environmental impacts (Trezza &

Scian ; Obernberger et al. ; WBCSD ). In con-

trast to wastewater sludge, FS is collected from individual

households and hence has highly variable characteristics

(Niwagaba et al. ). This suggests that experience with

the combustion of wastewater sludge is not directly transfer-

able to FS.

The objective of this study was to assess the suitability of

dried FS from unplanted drying beds as a solid industrial

fuel based on (i) fuel characteristics in comparison to exist-

ing industrial fuels such as wastewater sludge and (ii) kiln

temperatures and end product characteristics in two differ-

ent pilot-scale industrial applications.
METHODS

This research was conducted over a period of ten months in

Dakar and Thiès, Senegal, and in Kampala, Uganda.
Faecal sludge sampling

In Dakar, FS samples were collected from: vacuum trucks

discharging into settling-thickening tanks (un-thickened

FS); a mixing tank (thickened FS); the surface of drying

beds; and dried FS following removal from beds. During

vacuum truck discharge, four 1-L grab samples were col-

lected. Grab samples were collected at the beginning,

twice in the middle and once at the end of vacuum truck

discharge. Drying beds were divided into sections, and

grab samples were collected from the centre of each sec-

tion. For the dried FS, grab samples were collected from

the entire sludge volume that was removed from the beds

and used in the pilot-scale kiln experiments. In Kampala,

FS samples were collected from: vacuum trucks dischar-

ging onto drying beds; the surface of drying beds; and

dried FS following removal from beds, in the same way

as in Dakar.

One composite sample was prepared from grab samples

and samples were kept on ice and transported to the labora-

tory the same day for analysis.

For comparison to faeces, one grab sample was col-

lected from a source separation toilet in Nairobi, Kenya.
Faecal sludge drying

In Dakar, FS was dried in four cycles on pilot-scale drying

beds, based on Seck et al. (). In each cycle, septic tank

FS from nine to ten vacuum trucks was discharged through

a bar screen into a settling-thickening tank for settling-

thickening between 2 and 6 days. Following this, the

sludge was pumped into a mixing tank for homogenization

and sample collection before loading onto the drying beds.

In cycles one and two, the sludge was dried to 90% TS

(bulk density: 500 kg/m3) and removed as sludge cakes

that were 30 to 50 mm thick. In cycles three and four,

the sludge was dried to 60% TS and mechanically

processed into FS briquettes (650 kg/m3) and pellets



3 M. Gold et al. | Faecal sludge as a solid industrial fuel Journal of Water, Sanitation and Hygiene for Development | in press | 2017

Uncorrected Proof
(720 kg/m3) before drying to 90% TS. Drying times were

between 16 and 22 days. On average, the hydraulic loading

rate was 33 cm. Based on the actual time it took to achieve

90% TS, the solid loading rates were 316, 205, 214 and

207 kg DM/m2*year.

In Kampala, FS was dried in parallel on four full-scale

drying beds. On each drying bed, FS from six to 21

vacuum trucks was discharged through a bar screen. In

Kampala, sanitation needs are met by both pit latrines

and septic tanks (Fichtner Water & Transportation

). Therefore, one drying bed was loaded with FS col-

lected from septic tanks, one with FS collected from lined

pit latrines, and two with a mix of FS collected from

septic tanks and lined pit latrines. FS drying was hindered

by poor drainage due to clogged sand filter layers and

rainfall within the study period. Therefore, solid loading

rates based on the actual drying times are misleading.

On average, the hydraulic loading rate was 52 cm.

Drying beds were loaded with 62 m3 septic tank FS,

96 m3 lined pit latrine FS, and 103 and 77 m3 mixed FS.

Mixed FS consisted of approximately 50% septic tank

and 50% pit latrine FS. Prior to pilot-scale kiln exper-

iments, the 90% TS FS was milled into a fine powder

(424± 15 kg/m3) with a manual hand-driven mill.
Figure 1 | Design of the pilot-scale kilns in Dakar in 1:50 (left) and Kampala in 1:100 (right) inc
Design and operation of pilot-scale kilns

Specifications of the pilot-scale kilns are presented in

Figure 1. They were designed and operated to mimic brick

curing at Ugandan Clays in Kampala and waste oil regener-

ation at Société Sénégalaise de Régénération des Huiles

Minérales (SRH) in Dakar.

In Dakar, the kiln was loaded with 5 kg of dried FS for

1 hr of combustion. Combustion of FS cakes (triplicate), pel-

lets (triplicate) and briquettes (duplicate) were compared to

charcoal (triplicate) (300 kg/m3). Based on preliminary

experiments, ventilation of the combustion chamber was

set to 7–16 m/s. FS ignition was started with 150 mL of

acetone. Flow of waste oil from the top collection container

through the heating coil into the bottom collection con-

tainer was controlled with a temperature-based valve in

the combustion chamber.

In Kampala, the kiln was loaded with 340–460 unfired

clay bricks obtained from Uganda Clays. Based on their

operation, the kiln was pre-heated with firewood for 2.3–

5.3 hours to remove moisture in the bricks. After pre-heat-

ing, the kiln was fed with dried FS through holes located

at the top for 2.3–2.5 hr. Combustion of 70–160 kg FS

(quadruplicate) was compared to coffee husks (duplicate)
Q4luding the position of the temperature probes.



Table 1 | Physical-chemical characteristics of FS loaded onto drying beds

Parameter Dry mass COD BOD5

Unit

% g O2/L g O2/L

Mean SD Mean SD Mean SD

FS Kampala

Septic tank FS 0.8 – 8.9 – 8.4 –

Lined pit latrine FS 2.3 – 11.5 – 6.6 –

Mixed FS 1 2.3 – 8.1 – 5.5 –

Mixed FS 2 3.4 – 21.0 – 12.0 –

FS Dakar

Un-thickened FS 1.2 0.6 12.4 7.6 3.3 1.8

Thickened FS 4.9 3.1 36.0 28.0 9.5 9.7

SD: standard deviation.
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(260 kg/m3 based on Suarez ()), which are currently

used by Ugandan Clays as a fuel. With coffee husks, the

kiln was pre-heated for 4–4.5 hr and fed with 140–180 kg

crushed coffee husks for 3–3.2 hr.

Monitoring of kiln operation

Kiln temperatures, waste oil temperature and compressive

strength of bricks were used as metrics to assess kiln per-

formance. Kiln temperatures were measured with type K

thermocouples and recorded with a data logger. In Dakar,

temperatures in the combustion chamber (temperature

probe 1 and 2) and the waste oil (temperature probe 3)

were recorded every 30 sec, and in Kampala every 30 sec

at three points (temperature probe 1, 2, 3).

Analyses

DM was measured gravimetrically at 105 WC, and ash con-

tent by determination of total volatile solids in a furnace at

550 WC (APHA ). BOD was determined by incubating

samples at 20 WC for 5 days. COD was determined with

Hach kits based on the manufacturer’s directions. In

Dakar, a Hach DRB200 heating block and DR4000v spec-

trophotometer and in Kampala a Hach COD Reactor

45,600 heating block and a Helios Aquamate NRTL/C spec-

trophotometer were used. Calorific value was determined

according to manufacturers’ directions with a Parr Instru-

ment calorimeter 1341EE in Dakar and a Gallenkamp

Auto-Bomb in Kampala. Helminth eggs were enumerated

according to Bailenger () in Dakar and Moodley et al.

() in Kampala.

Ultimate analysis was conducted by X-ray fluorescence

(XRF) with a Spectro Xepos according to the manufacturer’s

directions. For ultimate analysis, FS samples were pulver-

ized with a Retch mixer mill and pressed into 32 mm

pellets. Carbon, nitrogen and sulfur were analysed in dupli-

cate on pulverized samples with a HEKAtech Eurovector

and a Leco TruSpec CHNS Marco Analyzer.

In Kampala, compressive strength of bricks was deter-

mined with an Avery Denison Universal Compressive

Testing Machine according to Standard Methods (BSI

). Brick colour was determined qualitatively by compari-

son to bricks produced by Ugandan Clays.
RESULTS AND DISCUSSION

Faecal sludge characteristics

As shown in Table 1, FS from vacuum trucks in Kampala

and Dakar contained over 95% water. FS contained 0.8–

3.4% DM in Kampala and 1.2% DM in Dakar. These results

are similar to those previously reported, 0.5–0.9% DM for

FS in Dakar, and 2.2–4% DM for septic tank FS and lined

pit latrine FS in Kampala (Fichtner Water & Transportation

; Niwagaba et al. ; Sonko et al. ; Seck et al. ;

Gold et al. ). Industries commonly require fuels with

less than 10% water, therefore, effective dewatering and

drying technologies are key for the production of dried

fuels from FS (Diaw, personal communication; Holcim

(Schweiz) AG ; Seck et al. ).

In Dakar and Kampala, the dried FS had helminth egg

concentrations of 197± 247 eggs/g DM and 75± 96 eggs/g

DM, respectively. These values are comparable to those

observed by Seck et al. () of 69 Ascaris eggs/g DM. How-

ever, in contrast to use of dried sludge as soil conditioner in

agriculture, one benefit of dried FS as an industrial fuel is

that pathogen transmission pathways can be greatly

reduced.

Faecal sludge fuel characteristics

Table 2 presents typical characteristics of selected solid

fuels and guideline characteristics for use of solid fuels.



Table 2 | Characteristics (all in dry mass) of dried FS in comparison to wastewater sludge, excreta, coal, guideline values for use of solid fuels in industrial applications and industrial limits

Parameter Unit

Faecal sludge

Wastewater
sludgea,b,c,d

Excretae,
faecesf,g Coala,b

Guiding
valuesh,i

Industrial
limitsj,k,l,m,n

Kampala FS Dakar

Mean SD Mean SD

Calorific value MJ/kg 10.9 3.5 13.4 2.0 7.0–14.4 – 31–34.9 – >8–14

Moisture % 8.1 2.9 6.7 0.7 6.6–26 – 1.6–10 – <10

Ash % 58.7 11.5 47.0 4.0 39.5–57 7.9–21.1 7.5–15 – <60–15

Carbon % 27.8 3.1 28.8 3.4 16.9–31.6 – 70–79.1 – –

Hydrogen % 4.2 0.5 4.2 0.4 3.3–7.6 – 4–5.0 – –

Nitrogen % 3.2 0.4 3.0 0.6 0.4–4.2 3.9–11.8 1.2–1.8 <2.5–0.6 –

Sulfur % 0.7 0.1 1.7 0.0 0.7–1.6 0.5–1.6 0.7–2.1 <0.2–0.1 <2.5–0.5

Chlorine % 0.04 0.01 0.14 0.03 0.07–0.4 – 0.06 <0.3-0.03 <0.5–0.2

Phosphorus % 1.4 0.4 1.0 0.1 3.1 1.3–2.3 0.51 – <1.0

Arsenic ppm 0.6 0.4 2.8 0.5 <0.3–14 – <0.3–4 – –

Cadmium ppm <2.0 0.0 <1.8 0.4 4–10.1 0.3–0.4 <1–0.17 <5 –

Chromium ppm 485 298 401 212 190–530 0.7 12.2–33 – –

Copper ppm 114 12 216 47 5.3–400 22–36 1.8–32 – <3,000–1,000

Mercury ppm <0.9 0.5 <0.8 0.4 2.1–5.4 0.3 0.08–0.2 – <10

Nickel ppm 24 4 30 1 40–45 2.5–4.8 12–19 – –

Lead ppm 28 8 59 14 220–365 0.7–1.2 2.0–19 – –

Zinc ppm 646 56 918 257 1,132–4,900 135–355 22.8–50 <800 –

SD, standard deviation.
aHelena Lopes et al. (2003).
bLuts (2000).
cOtero et al. (2007).
dJudex et al. (2012).
eSchouw et al. (2002).
fVinnerås et al. (2006).
gDWA (2008).
hObernberger et al. (2006).
ivan Loom & Jaap (2008).
jDiaw (personal communication; Directeur Qualité-Sécurité-Environnement, Sococim Industrie, Rufisque, Senegal).
kHolcim (Schweiz) AG (2013).
lBarikurungi (personal communication; Industrial Ecology Coordinator, Hima Cement Ltd., Kampala, Uganda).
mMadlool et al. (2011).
nWBCSD (2014).
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The average calorific values and ash contents of 10.9–

13.4 MJ/kg DM and 47.0–58.7% for FS in this study were

comparable to typical values of 7.0–14.4 MJ/kg DM and

39.5–57.0%DM for wastewater sludge in Europe (Luts

; Helena Lopes et al. ; Otero et al. ; Judex

et al. ). The ash content of FS was much higher than

that of faeces and excreta, with reported ash contents of

8 and 21% DM, respectively (Schouw et al. ; DWA

). High concentrations of ash are not desirable as it

does not contribute to the fuel value (Tyagi & Lo ).
In comparison to coal and recommended guideline

values, dried FS has elevated concentrations of nitrogen,

sulfur and chlorine, which indicates the potential for

dioxin, furan, NOx, N2O, SO2, HCl, HF and CxHy for-

mation during combustion (Werther & Ogada ; Roy

et al. ). This indicates the need for high operating temp-

eratures, above which, dioxins and furans are completely

destroyed (Werther & Ogada ), and the need for

large-scale applications which can effectively control

emissions.
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Dried FS in this study had comparable concentrations of

elements affecting ash production and ash fusion tempera-

tures as those reported for wastewater sludge (see

Supplementary material, Table S1). This explains the com-

parable ash fusion temperatures of FS and wastewater

sludge (1,142–1,361 WC and 1,183–1,374 WC, respectively)

(unpublished data, Pivot Works; Weidong et al. ),

which indicates that FS fuel would not increase fouling or

slacking over wastewater sludge.

As shown in Table 2, dried FS analysed in this study

had lower heavy metal concentrations than those reported

for wastewater sludge, and was comparable to those

reported for FS of 751–782 ppm zinc, 113–139 ppm

copper and 66–77 ppm lead by Bassan et al. () and

2.3 ppm arsenic, 0.7 ppm cadmium, 61 ppm copper,

2.4 ppm lead and 34 ppm zinc by Appiah Effah et al.

(). As shown in Table 2, heavy metal concentrations

in FS in Dakar and Kampala were higher compared to

those in faeces and excreta (Schouw et al. ; Vinnerås

et al. ).

Fuel requirements of cement companies in Switzerland,

Uganda and Senegal are also included in Table 2. Whether

FS meets the limits for ash, sulfur and phosphorus depends

on the location. In contrast, heavy metal concentrations

were below guideline values. In general, cement industries

only accept fuels with total heavy metal concentrations

of AsþNiþCoþ Seþ TeþCrþ Pbþ Sbþ SnþV <10,000

to 2,500 ppm, and CdþHgþ TI <100 ppm (Diaw, personal

communication; Madlool et al. ; WBCSD ). These
Figure 2 | Pilot-scale experiments in Kampala: temperature during one repetition with FS (left
values were, on average, 594 ppm and 1 ppm in Kampala

and 549 ppm and 2 ppm in Dakar.

This characterization indicates that dried FS as a fuel is

viable and comparable to wastewater sludge, e.g., in coal-

fired power plants or cement industries (Werther & Ogada

; Luts ; Diener et al. ; WBCSD ).

Pilot-scale kiln experiments

In Kampala, the pilot-scale kiln was operated with FS fuel to

mimic industrial brick curing at 800 WC for 1 hr (Gita, per-

sonal communication; Gita Kilns Enterprises/Ugandan

Clays, Kampala, Uganda); the resulting temperature profiles

are shown in Figure 2. Kiln temperatures were highly vari-

able within the kiln and between repetitions. In general,

temperatures and variability were highest in the middle of

the kiln within the combustion zone, and lowest at the

bottom of the kiln next to the chimney. Average tempera-

tures over all four repetitions were 524 WC with maximum

temperatures of over 800 WC in all repetitions. Temperatures

were comparable with those obtained with coffee husks of

421 WC and 552 WC, with maximum temperatures of 850 WC.

As a metric of quality, the compressive strength of bricks

cured with FS was 8.3± 2.4 MPa, and with coffee husks

5.9 and 8.4 MPa, which was comparable to commercial pro-

ducts from Ugandan Clays of 6.2 and 7.9 MPa.

In Dakar, the pilot-scale kiln was operated with FS fuel

to mimic an industrial waste oil regeneration process, which

includes distillation at 360 WC to remove water vapour and
), and during repetitions with FS and coffee husks (right) (thermocouple 2).



Figure 3 | Pilot-scale experiments in Dakar: temperature during two repetitions with FS briquettes (left) and during all repetitions with FS cakes, briquettes, pellets and charcoal.
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volatile compounds. The resulting temperature profiles are

shown in Figure 3. Repetitions with the same fuel type

were replicable. Acetone was used to start ignition, and

resulted in a temperature spike within the first 5 min. There-

fore, these results were excluded from analysis. The highest

temperatures of 437 WC were obtained with FS cakes com-

pared to 315 WC for FS pellets, 280 WC for FS briquettes and

262 WC for charcoal. FS briquettes and pellets were compar-

able to charcoal with reasonably stable temperatures around

250 WC. However, to meet the 360 WC required by this

specific industrial application would require additional fuel

loading and/or optimization of the kiln design.

Qualitative observation of odour from FS combustion

was negligible in both Kampala and Dakar.

Implications for faecal sludge management

Currently, the industrial demand for fuel in Dakar and

Kampala greatly exceeds the amount of FS that reaches

treatment plants, which is 2,600 tons FS DM per year in

Dakar and 2,700 ton FS DM per year in Kampala. These

values are based on Seck et al. () for Dakar and the aver-

age DM concentration in Table 1 and a treatment capacity

of 400 m3/d at the Lubigi Wastewater and Faecal Sludge

Treatment Plant in Kampala (6-day operation per week).

Fuel demands in cement companies operating in Dakar

and Kampala are 4 to 40 times this treated FS quantity

(based on fuel consumption of cement companies in

Germany and Switzerland discussed in the Introduction).
Potentially, this huge industrial demand could be a driver

for increasing FS collection, transportation and treatment

capacities. For example, for Dakar and Kampala, it can be

estimated that 20,000 tons FS DM are produced per year

but do not reach treatment (Vinnerås et al. ; Diener

et al. ). Further improvements to treatment performance

that would increase the potential for use of FS as a fuel

include avoiding sand or soil entering onsite sanitation tech-

nologies or removing them with grit chambers, and

preventing sand from drying beds entering FS by using

other technologies.
CONCLUSIONS

This research demonstrated that dried FS can be used as an

industrial fuel in industries thereby providing revenues to

offset treatment costs and provide an incentive to sustain

FS treatment. Key findings include:

• Knowledge from combustion of wastewater sludge

appears to be transferable to FS.

• Dried FS can be as effective in providing energy for indus-

tries as coffee husks and charcoal.

• FS fuel characteristics require further refinement (e.g., ash

content), and quantities of treated FS need to be increased.

• FS characteristics are variable, therefore, prior to

implementation, FS characteristics should be analysed

on a case-by-case basis.
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